Short Notes

$$D = \frac{4\lambda^2(\Delta_0 - \Delta_1)}{\Delta_0 \Delta_1}$$
(3)

is valid for the zero-field splitting parameter D in the second order of perturbation theory. The notation is the same as in equation (2).

If both Δ_0 and Δ_1 do not essentially change then the change of D must be the result of a change in the difference, $\Delta_0 - \Delta_1$, which is equal to the splitting of the Γ_5 triplet by the trigonal distortion. This assumption and the experimental results permit to evaluate the change of g-tensor components described by equation (2).

Increasing the pressure from 0 to 12 kbar leads to a change of D by 180x $\times 10^{-4}$ cm⁻¹ with $\lambda \approx 45$ cm⁻¹ (for a crystal) and $\Delta_0 \approx \Delta_1 \approx 12000$ cm⁻¹, then the g-tensor components should change by 0.0005, that is within the experimental error.

The change of hyperfine interaction can be evaluated by means of the change of D in the framework of the model used. The hyperfine field H^{hf} , acting on a nucleus is estimated by the numerical expression (4) (in G)

$$H^{hf} = 1.25 \times 10^5 \left< \frac{1}{r^3} \right> \Delta g_L^{-1}$$
 (4)

The value $\langle \frac{1}{r^3} \rangle$ is expressed in atomic units. The shift $\Delta g = -8\lambda/\Delta_0$ is written as Δg_L to outline that the shift of the g-factor has orbital nature and is not connected with the admixture of other spin substates to the ground state. This condition is fulfilled in the case of V²⁺ in octahedral surroundings, as the ground state of the ion is a singlet one.

From equation (4) using formulas (2) and (3) one can evaluate the change of the orbital hyperfine field (in G):

$$\delta H^{\text{hf}} = 1.25 \times 10^5 \frac{4}{3\lambda} \delta D \left\langle \frac{1}{r^3} \right\rangle .$$
 (5)

For the V^{2+} ion $\langle \frac{1}{r^3} \rangle = 2.75$ at. units. Using the experimentally obtained change of D one finds $|\delta H^{hf}| \approx 190$ G. At $p = 0 \Delta g_L = -0.02$ and $H^{hf} = -6.88$ kG. With increasing pressure $|\Delta g_L|$ decreases and consequently $|H^{hf}|$ decreases, too,

K207

physica status solidi (b) 71

which results in a decrease of the hyperfine structure constant.

References

- (1) E.S. ITSKEVICH, Prib. i Tekh. Eksper. 4, 148 (1963).
- (2) B. BLEANEY and R.S. RUBINS, Proc. Phys. Soc. 77, 103 (1961).
- (3) A. ABRAGAM and B. BLEANEY, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford 1970 (p. 431).
- (4) Hyperfine Interactions, Ed. A.J. FREEMAN and R.B. FRANKEL, Academic Press, New York/London 1967 (p. 118).

From wanter () and a framelies (2) to a (3) for our (we need the chartes of the

BATH OT FR AND HAT THE AND AND AND THE THE ALL AND THE ALL AND THE

(Received August 1, 1975)

K208